首页 - 科技 > 人工智能声音控制,智能控制原理

人工智能声音控制,智能控制原理

发布于:2024-04-14 作者:nyajiajiao.cz 阅读:9

一、华为手机上自带的人工智能是啥

华为人工智能手叫小e,中文就是小艺,小艺就是手机的智能语音助手。

华为在智能手机上增加人工智能功能,将带来技术的下一个转变。该公司的消费者软件工程主管兼情报工程总监 Felix Zhang将人工智能比作蒸汽机的出现,移动人工智能将改变智能手机的两个关键方面:用户与机器之间的互动,以及情境个性化开放。

华为的新款旗舰智能手机已经在上个月发布,Mate 10和 Mate 10 Pro都配备了专注于人工智能的麒麟处理器,该处理器有一个专门的神经处理单元,可以通过图像识别技术每分钟处理 2000张图像。

扩展资料:

手机使用注意事项:

1、用户拨电话时把手机紧贴耳朵,手机拨出电话而未接通时,辐射会明显增强,此时应该让手机远离头部,间隔约五秒钟后再通话。

2、手机信号越弱,耳朵贴得越近。当手机信号变弱时,许多人会本能地将手机尽量贴近耳朵。但根据手机的工作原理,在信号较弱的情况下,手机会自动提高电磁波的发射功率,使得辐射强度明显增大。此时把耳朵贴近,头部受到的辐射就会成倍增加。

3、用户如若长时间的连续辐射可能会使脑部受到影响。专家建议不宜用手机长时间通话,可考虑改用固定电话或者使用耳机,如果不得不长时间用手机直接通话,也应每隔一两分钟左右耳轮换接听。

参考资料来源:百度百科-手机

参考资料来源:百度百科-小艺

二、智能控制原理

智能控制(intelligent controls)在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。控制理论发展至今已有100多年的历史,经历了“经典控制理论”和“现代控制理论”的发展阶段,已进入“大系统理论”和“智能控制理论”阶段。

智能控制的基本概念

智能控制的定义一:智能控制是由智能机器自主地实现其目标的过程。而智能机器则定义为,在结构化或非结构化的,熟悉的或陌生的环境中,自主地或与人交互地执行人类规定的任务的一种机器。

定义二: K.J.奥斯托罗姆则认为,把人类具有的直觉推理和试凑法等智能加以形式化或机器模拟,并用于控制系统的分析与设计中,使之在一定程度上实现控制系统的智能化,这就是智能控制。他还认为自调节控制,自适应控制就是智能控制的低级体现。

定义三:智能控制是一类无需人的干预就能够自主地驱动智能机器实现其目标的自动控制,也是用计算机模拟人类智能的一个重要领域。

定义四:智能控制实际只是研究与模拟人类智能活动及其控制与信息传递过程的规律,研制具有仿人智能的工程控制与信息处理系统的一个新兴分支学科。

产生及发展

自1932年奈魁斯特(H.Nyquist)的有关反馈放大器稳定性论文发表以来,控制理论的发展已走过了60多年的历程。一般认为,前30年是经典控制理论的发展和成熟阶段,后30年是现代控制理论的形成和发展阶段。随着研究的对象和系统越来越复杂,借助于数学模型描述和分析的传统控制理论已难以解决复杂系统的控制问题。智能控制是针对控制对象及其环境、目标和任务的不确定性和复杂性而产生和发展起来的。

从20世纪60年代起,计算机技术和人工智能技术迅速发展,为了提高控制系统的自学习能力,控制界学者开始将人工智能技术应用于控制系统。

1965年,美籍华裔科学家傅京孙教授首先把人工智能的启发式推理规则用于学习控制系统,1966年,Mendel进一步在空间飞行器的学习控制系统中应用了人工智能技术,并提出了“人工智能控制”的概念。1967年,Leondes和Mendel首先正式使用“智能控制”一词。

20世纪70年代初,傅京孙、Glofis0和Saridis等学者从控制论角度总结了人工智能技术与自适应、自组织、自学习控制的关系,提出了智能控制就是人工智能技术与控制理论的交叉的思想,并创立了人机交互式分级递阶智能控制的系统结构。

20世纪70年代中期,以模糊集合论为基础,智能控制在规则控制研究上取得了重要进展。1974年,Mamdani提出了基于模糊语言描述控制规则的模糊控制器,将模糊集和模糊语言逻辑用于工业过程控制,之后又成功地研制出自组织模糊控制器,使得模糊控制器的智能化水平有了较大提高。模糊控制的形成和发展,以及与人工智能的相互渗透,对智能控制理论的形成起了十分重要的推动作用。

20世纪80年代,专家系统技术的逐渐成熟及计算机技术的迅速发展,使得智能控制和决策的研究也取得了较大进展。1986年,K.J.Astrom发表的著名论文《专家控制》中,将人工智能中的专家系统技术引入控制系统,组成了另一种类型的智能控制系统——专家控制。目前,专家控制方法已有许多成功应用的实例。

详解

对许多复杂的系统,难以建立有效的数学模型和用常规的控制理论去进行定量计算和分析,而必须采用定量方法与定性方法相结合的控制方式。定量方法与定性方法相结合的目的是,要由机器用类似于人的智慧和经验来引导求解过程。因此,在研究和设计智能系统时,主要注意力不放在数学公式的表达、计算和处理方面,而是放在对任务和现实模型的描述、符号和环境的识别以及知识库和推理机的开发上,即智能控制的关键问题不是设计常规控制器,而是研制智能机器的模型。此外,智能控制的核心在高层控制,即组织控制。高层控制是对实际环境或过程进行组织、决策和规划,以实现问题求解。为了完成这些任务,需要采用符号信息处理、启发式程序设计、知识表示、自动推理和决策等有关技术。这些问题求解过程与人脑的思维过程有一定的相似性,即具有一定程度的“智能”。

随着人工智能和计算机技术的发展,已经有可能把自动控制和人工智能以及系统科学中一些有关学科分支(如系统工程、系统学、运筹学、信息论)结合起来,建立一种适用于复杂系统的控制理论和技术。智能控制正是在这种条件下产生的。它是自动控制技术的最新发展阶段,也是用计算机模拟人类智能进行控制的研究领域。1965年,傅京孙首先提出把人工智能的启发式推理规则用于学习控制系统。1985年,在美国首次召开了智能控制学术讨论会。1987年又在美国召开了智能控制的首届国际学术会议,标志着智能控制作为一个新的学科分支得到承认。智能控制具有交叉学科和定量与定性相结合的分析方法和特点。

一个系统如果具有感知环境、不断获得信息以减小不确定性和计划、产生以及执行控制行为的能力,即称为智能控制系统.智能控制技术是在向人脑学习的过程中不断发展起来的,人脑是一个超级智能控制系统,具有实时推理、决策、学习和记忆等功能,能适应各种复杂的控制环境.

智能控制与传统的或常规的控制有密切的关系,不是相互排斥的.常规控制往往包含在智能控制之中,智能控制也利用常规控制的方法来解决“低级”的控制问题,力图扩充常规控制方法并建立一系列新的理论与方法来解决更具有挑战性的复杂控制问题.

1.传统的自动控制是建立在确定的模型基础上的,而智能控制的研究对象则存在模型严重的不确定性,即模型未知或知之甚少者模型的结构和参数在很大的范围内变动,比如工业过程的病态结构问题、某些干扰的无法预测,致使无法建立其模型,这些问题对基于模型的传统自动控制来说很难解决。

2.传统的自动控制系统的输入或输出设备与人及外界环境的信息交换很不方便,希望制造出能接受印刷体、图形甚至手写体和口头命令等形式的信息输入装置,能够更加深入而灵活地和系统进行信息交流,同时还要扩大输出装置的能力,能够用文字、图纸、立体形象、语言等形式输出信息。另外,通常的自动装置不能接受、分析和感知各种看得见、听得着的形象、声音的组合以及外界其它的情况。为扩大信息通道,就必须给自动装置安上能够以机械方式模拟各种感觉的精确的送音器,即文字、声音、物体识别装置。可喜的是,近几年计算机及多媒体技术的迅速发展,为智能控制在这一方面的发展提供了物质上的准备,使智能控制变成了多方位“立体”的控制系统。

3.传统的自动控制系统对控制任务的要求要么使输出量为定值(调节系统),要么使输出量跟随期望的运动轨迹(跟随系统),因此具有控制任务单一性的特点,而智能控制系统的控制任务可比较复杂,例如在智能机器人系统中,它要求系统对一个复杂的任务具有自动规划和决策的能力,有自动躲避障碍物运动到某一预期目标位置的能力等.。对于这些具有复杂的任务要求的系统,采用智能控制的方式便可以满足。

4.传统的控制理论对线性问题有较成熟的理论,而对高度非线性的控制对象虽然有一些非线性方法可以利用,但不尽人意。而智能控制为解决这类复杂的非线性问题找到了一个出路,成为解决这类问题行之有效的途径。工业过程智能控制系统除具有上述几个特点外,又有另外一些特点,如被控对象往往是动态的,而且控制系统在线运动,一般要求有较高的实时响应速度等,恰恰是这些特点又决定了它与其它智能控制系统如智能机器人系统、航空航天控制系统、交通运输控制系统等的区别,决定了它的控制方法以及形式的独特之处。

三、人工智能的分类包括哪些呀

人工智能领域六大分类:

1、深度学习:

深度学习是基于现有的数据进行学习操作,是机器学习研究中的一个新的领域,机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例像,声音和文本。深度学习是无监督学习的一种。

2、自然语言处理:

自然语言处理是用自然语言同计算机进行通讯的一种技术。人工智能的分支学科,研究用电子计算机模拟人的语言交际过程,使计算机能理解和运用人类社会的自然语言如汉语、英语等,实现人机之间的自然语言通信,以代替人的部分脑力劳动,包括查询资料、解答问题、摘录文献、汇编资料以及一切有关自然语言信息的加工处理。例如生活中的电话机器人的核心技术之一就是自然语言处理。

3、计算机视觉:

计算机视觉是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像;计算机视觉就是用各种成象系统代替视觉器官作为输入敏感手段,由计算机来代替大脑完成处理和解释。计算机视觉的最终研究目标就是使计算机能像人那样通过视觉观察和理解世界,具有自主适应环境的能力。计算机视觉应用的实例有很多,包括用于控制过程、导航、自动检测等方面。

4、智能机器人:

如今我们的身边逐渐开始出现很多智能机器人,他们具备形形色色的内部信息传感器和外部信息传感器,如视觉、听觉、触觉、嗅觉。除具有感受器外,它还有效应器,作为作用于周围环境的手段。这些机器人都离不开人工智能的技术支持;科学家们认为,智能机器人的研发方向是,给机器人装上“大脑芯片”,从而使其智能性更强,在认知学习、自动组织、对模糊信息的综合处理等方面将会前进一大步。

5、自动程序设计:

自动程序设计是指根据给定问题的原始描述,自动生成满足要求的程序。它是软件工程和人工智能相结合的研究课题。自动程序设计主要包含程序综合和程序验证两方面内容。前者实现自动编程,即用户只需告知机器“做什么”,无须告诉“怎么做”,这后一步的工作由机器自动完成;后者是程序的自动验证,自动完成正确性的检查。其目的是提高软件生产率和软件产品质量;自动程序设计的任务是设计一个程序系统,接受关于所设计的程序要求实现某个目标非常高级描述作为其输入,然后自动生成一个能完成这个目标的具体程序。该研究的重大贡献之一是把程序调试的概念作为问题求解的策略来使用。

6、数据挖掘:

数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。它通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。它的分析方法包括:分类、估计、预测、相关性分组或关联规则、聚类和复杂数据类型挖掘。

二维码

扫一扫关注我们

版权声明:本文内容由互联网用户自发贡献,本站不拥有所有权,不承担相关法律责任。如果发现本站有涉嫌抄袭的内容,欢迎发送邮件至 465747283@qq.com举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。

相关文章

自定义链接1

电话咨询
自定义链接2